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Abstract: Compressibility factor and viscosity of natural gasses are of great 

importance in petroleum and chemical engineering. To calculate the natural gas 

properties in the pipelines, storage systems and reservoirs, the exact values of gas 

compressibility factor and viscosity are required. A new method that allows accurate 

determination of compressibility factor and gas viscosity for all types of: sweet, sour, 

condensate and acid gases in a wide range of pressure and temperature conditions are 

presented here. The sizable data base of experimental Z factor and experimental gas 

viscosity measurements is collected from the available related literature. This newly 

developed method  is tested by implementation of  combined fuzzy inference system and 

Genetic Algorithm. The natural gas compressibility factor and viscosity as a function of 

gas composition, pressure, temperature and molecular weight of C7+ can be predicted 

through this model. The accuracy of this proposed model is compared with some 

commonly applied empirical correlations. The average absolute relative error  here is 

1.28 % and 0.57% for Z factor and gas viscosity, respectively. 

Keywords: Natural Gas Viscosity, Gas Compressibility Factor, ANFIS, Genetic Algorithm. 

 

 

 

1. Introduction 

In oil and gas industries, natural gas 

compressibility factor and viscosity are very 

important parameters in calculating other gas 

properties. Compressibility factor represents 

the deviation of real gas behavior from the 

ideal state.  

Natural gas compressibility factor and viscosity 

depend on gas compositions, temperature and 

pressure. It is revealed that gas viscosity 

increases with an increase in temperature and 

pressure. In the methods in practice 

determination of Z factor and gas viscosity, 

experimental measurement is the most 

accurate method, while it is hard to determine 

the compressibility factor and viscosity for all 

composition states of gases at all ranges of 

pressure and temperature. Experimental 

measurement is expensive and time 

consuming, moreover, they are usually subject 

to reservoir temperature, Ahmed, (2006).  The 

properties of viscosity prediction and 

compressibility factor empirical correlations 

can be measured with an acceptable accuracy 

through newly introduced methods. 

Correlations applied in estimating gas 

compressibility factor are usually too 

complicated, require initial value and have 

significant errors, Shokir, et al, (2012). A minor 

error in predicting Z factor will lead to a big 

error in predicting all other properties like gas 

formation volume factor, compressibility and 

gas in situ Mahmoud, (2013), while a small 

uncertainty in gas viscosity data may affect the 

inflow performance corelations curves et al, 

(2001). The objective of this study is to propose 

a new accurate model for prediction of gas 
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compressibility factor and viscosity for all 

natural gas mixtures with impurities like CO2, 

H2S, and N2 in a wide range of pressure and 

temperature. 

1.2. Natural Gas Compressibility Factor 

There exist several different correlations for 

predicting Z factor, mostly based on 

corresponding states concept Xiang, (2005). The 

law of corresponding states, states that all pure 

gases have the same Z factor at the same 

reduced pressure and temperature values 

McCain, (1990).  

For the mixtures of gas types the law of 

corresponding states is extended and Pseudo-

reduced pressure (Ppr) and Pseudo-reduced 

temperature (Tpr) are introduced. The Standing 

and Katz (1942) chart represents compressibility 

factors of sweet and dry natural gas as a 

function of Ppr and Tpr. This chart is generally 

valid for sweet natural gas types with low 

amounts of non-hydrocarbons. Beggs and Brill 

(1973) introduced an equation extracted from 

Standing and Katz Z-factor chart. This 

correlation is a function of (Ppr) and (Tpr). This 

method is not valid for (Tpr) values less than 

0.92. Azizi et al. (2010) developed an equation 

based on linear Genetic Programming (GP) 

approach in order to estimate the sweet gas 

types compressibility factor over the specific 

range of  (Ppr) and (Tpr). Dranchuk and Abu-

Kassem(1975) provided a correlation with 

eleven constants for calculating the gas 

compressibility factor. Kumar(2004) introduced 

the Shell model for prediction of Z factor. 

Sanjari and Lay(2012) proposed an empirical 

correlation by applying all the experimental 

data in multiple regression analysis, where, Z 

factor is a function of Ppr and Tpr.  

1.3. Natural Gas Viscosity 

There exist several correlations and models in 

predicting natural gas viscosity. Bicher and 

Katz (1943) developed a plot of viscosity versus 

molecular weight for natural gas mixtures at 

atmospheric pressure, in presence of non-

hydrocarbon components through correction 

factor. Lohrenz et al (1964) proposed a 

correlation for viscosity of natural gases as a 

function of gas composition, pressure and 

temperature. Lee Gonzalez and Eakin (1966) 

carried out a project to study the viscosity of 

natural gas types. Temperature, density, and 

molecular weight of the natural gas are 

sufficient components in calculating the 

viscosity through Lee, Gonzalez, and Eakin 

correlation. Shokir and Dmour (2009) 

developed a model to determine the viscosity of 

pure hydrocarbon and gas mixtures. Heidaryan 

et al.(2010) presented an explicit equation as a 

function of temperature, gas density and 

apparent molecular weight with 10 constants to 

calculate the natural gas viscosity. Sanjari et 

al.(2011) presented an explicit equation to 

determine gas viscosity with two dependent 

variables of (Ppr and Tpr), and eleven 

independent variables of (α1– α11).  

2. Data Gathering and the New 

Developed Method 

In this study, a great number of data from a 

variety of natural gas types are applied in 

developing a new method for predicting gas 

compressibility factor and viscosity. These data 

contain 1500 gas compressibility factor data 

point of 99 different gas types: Elsharkawy  

and Foda, (1998), Elsharkawy, (2002), Reamer 

et al (1944 & 1945), Reameret al (1951), 

Reamer et al (1952), Reamer & Sage, (1962), 

Sage et al (1940);  Sage and Lacey, (1950); Sage 

et al (1934), Simon, et al (1977), Wichert  and 

Aziz, (1971) and 1300 gas viscosity data points . 

These data include mole percent of C1 to C7+, 

CO2, H2S, N2, molecular weight of the C7+, 

pressures, temperatures of natural gas 

viscosities and experimental compressibility 

factors. The data range applied in this study is 

tabulated in Table 1. 

The modeling approach applied in this study is 

an adaptive neuro-fuzzy inference system 

similar to available system identification 

techniques. [After applying the ANFIS data to 

train the fuzzy inference system model]. The 

inputs here are gas compositions, pressure, 

temperature and molecular weight of C7
+. 

 i C7+Z=f y ,P,T,MW
                                   (1) 

 i C7+Z=f y ,P,T,MW
                                   (2) 

 i C7+Z=f y ,P,T,MW
                                   (3) 
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Table 1. Data Range of Natural Gas Used in this 

Study 

Viscosity Z factor  

Max Min Max Min  

90.26 57.3 97.76 19.38 C1% 

28.4 0.55 28.67 0 C2% 

2.7 0.5 14.15 0 C3% 

0.4 0 2 0 iC4% 

0.64 0 1.07 0 nC4% 

0.214 0 1.08 0 iC5% 

0.16 0 2.85 0 nC5% 

0.014 0 1.31 0 C6% 

6.382 0 12.68 0 C7
+% 

14.28 0 67.16 0 CO2% 

2.58 0 51.37 0 H2S% 

6.59 0 25.15 0 N2% 

9427.45 646.86 16896.9 154 P (psia) 

350.33 13.73 335.57 40 T (f) 

142 0 191 0 MWc7+ 

__ __ 2.0366 0.402 Z 

70.26 9.43 __ __ µg(pa.s) 

2.1. ANFIS  

Adaptive Neuro - Fuzzy Inference System 

(ANFIS) creates a Fuzzy inference system (FIS) 

with input/output data. Fuzzy inference is the 

system of formulating the mapping from a 

given input to an output through fuzzy logic.  

 For a given data set, different ANFIS, can be 

constructed through the two different 

identification methods of grid partitioning and 

subtractive clustering, Jalalifar et al (2011). 

The subtractive clustering method works based 

on the potential of any data points in a 

clustered centered feature space,  Chiu, (1994).  

Sugeno type fuzzy system is developed through 

a graphical ANFIS and after training it is 

tested for validation. This graphical inference 

is of the four: loading and plotting data, 

creating the basic structure of FIS, training 

FIS and validation parts. To begin the FIS 

training, the training data set that contains of 

input/output data pairs of the target system 

are necessary. 

The Hybrid-learning rule applied for basic 

structure of FIS and the ANFIS is run through 

60 epochs. The data set consists of two, 

training, (70%) and testing, (30%) sets. The FIS 

is generated through the sub clustering 

technique and a range of influence of cluster 

centers (r) is set for every run. When the range 

of influence is set at 0.38 the error is low but 

that is not ideal, that is, this model is not able 

to find the best radius for clustering when the 

FIS is generated. Here, when 16 radi are 

considered for each dimension, the error is low 

compared to when only one radius is applied for 

all dimensions. Consequently, the Genfis2 is 

one of the suggestions. Genfis2 and Anfis 

function of MATLAB programming language 

are applied to generate a Sugeno type of FIS 

with maximum efficiency. Since setting the 

clustering range of influence for each 

dimension manually by trial and error is a 

difficult and time consuming process, in order 

to find the best radiuses applying Genetic 

Algorithm (GA) is a better choice for optimizing 

performance. 

2.2. ANFIS-GA based Model 

GA is known as a kind of effective and robust 

optimization algorithm well-suited for 

discontinues and multi- modal functions(Beyer, 

2000). GA algorithms are special type of 

evolutionary algorithms which apply 

evolutionary biology techniques such as 

inheritance and mutation.  The GA applies the 

genetically evolution as a model for solving the 

problem. A problem that must be resolved is 

the input and solutions are encoded as a 

function of the pattern called fitness function 

which evaluates each one of the most randomly 

selected candidate solutions. 

In this study, an ANFIS and a combination of 

ANFIS and GA are applied. GA is highly 

involved in optimizing the clustering parameters 

like the influence range and evaluation of ANFIS 

fitness values through the solutions. The input 

parameters values applied in this study are 

tabulated in Table 2 and the diagram of hybrid 

ANFIS-GA model is presented as a flowchart in 

Fig. (1). 

Table 2. Input Parameters Values 

GA - ANFIS Model 

Train data                                                              70% 

Test data                                                                30% 

Dimension of problem                                              16 

Maximum number of generations in GA                 60 

Number of populations in GA                                  70 

Number of epoch in ANFIS                                      60 
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Figure 1. The ANFIS-GA Model flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective of applying GA together with 

ANFIS model is to find the optimum cluster 

center’s range of influence in each dimension 

and minimizing the fitness function. In this 

case the fitness function is the absolute average 

relative percent error of predicted outputs. 

Maximum number of? generation in GA is 60 

and Maximum number of population is 70. 

 

 

3. Results  

A new compositional model for estimation of 

gas compressibility factor based on Fuzzy logic 

modeling approach and GA is proposed in this 

study. The data set consists of two training, 

(70%) and testing, (30%) sets. 

Between the two methods adopted in this 

article, combination of GA and ANFIS, 

indicates a better performance with minimum 

average absolute relative error (AARE) in 

predicting gas properties, Tables 3 and 4. 

The two generated methods for mapping the 

inputs into a single output are detailed and 

tabulated in Tables 3 and 4. The hybrid GA-

ANFIS model is more accurate and closer to the 

experimental data. The number of rules in GA-

ANFIS system is less than that of the ANFIS 

system, that is, ANFIS is more complex for 

modeling the gas compressibility factor and 

viscosity. The combination of GA-ANFIS is an 

efficient AI system in predicting these 

properties. The advantage in applying this 

newly introduced method is its multi-

functionality, that is, no limitation in 

performance. The Optimum ranges of influence 

when GA+ ANFIS are applied for gas viscosity 

and compressibility factor are illustrated in bar 

charts in Figs (2 & 3).  

The accuracy of this new model in estimating 

both the gas compressibility factor and 

viscosity are shown in Figs. (4 & 5), where a 

good agreement is observed between 

experimental data and predicted values 

obtained by GA-ANFIS model  

Table 3. The Results of ANFIS Models against Testing Data 

Properties r Number of Rules AAE AARE% 

 0.4 24 0.03566 4.370 

Z factor 0.35 37 0.03461 4.315 

 0.3 61 0.02387 2.882 

 0.4 36 0.01052 1.134 

Viscosity 0.35 54 0.00828 0.972 

 0.3 70 0.00824 0.936 

Table 4.  The Results of GA-ANFIS Models against Testing Data 

Properties R Number of Rules AAE AARE% 

Z factor 
[0.72,0.48,0.56,0.12,0.99,0.87,0.69,0.94,0.83,0.81,0.5,

0.61,0.68,0.35,0.47,0.13] 
26 0.01134 1.284 

Viscosity 
[0.56,0.13,0.55,0.74,0.94,0.99,0.68,0.59,0.77,0.83,0.6,

0.7,0.13,0.51,093,0.31] 
42 0.0017 0.576 

Create initial FIS with the clustering 

parameters generated in GA 

Specify the FIS parameters and appraise 

fitness function 

Get new clustering parameters in next 

generation 

Reach the end of criterion? 

End 

Yes 

N

o 

Start to generate the initial population 
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Figure2. Optimum Range of Influence through GA for Gas Viscosity 

 

Figure 3. Optimum Range of Influence through GA for Gas Compressibility Factor 

 

Figure 4. Comparison between the Results of GA-ANFIS Model and the Testing Data for Gas Compressibility 
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Figure 5. Comparison between the Results of GA-ANFIS Model and the Testing Data for Gas Viscosity 

Table 5. The Comparison of Case Studied Gas Sample and Experimental Data with the Results of the New Model 

and other Methods at T=162F 

Predicted z  

P (psia)  Mole% Comp. 

Heidaryan  
Shell Oil 

Company  
Beggs and 

Brill  
GA-ANFIS 

Model 
Exp. Z  

0.828 

0.831 

0.832 

0.835 

0.837 

0.841 

0.845 

0.853 

0.861 

0.879 

0.928 

0.984 

1.043 

1.106 

1.172 

0.768 

0.769 

0.77 

0.771 

0.773 

0.775 

0.777 

0.782 

0.787 

0.8 

0.837 

0.882 

0.929 

0.979 

1.03 

0.768 

0.768 

0.769 

0.77 

0.771 

0.773 

0.775 

0.779 

0.784 

0.794 

0.828 

0.868 

0.911 

0.955 

1.001 

0.822 

0.826 

0.831 

0.832 

0.834 

0.835 

0.836 

0.839 

0.842 

0.849 

0.871 

0.916 

0.947 

1.001 

1.053 

0.819 

0.821 

0.821 

0.823 

0.823 

0.825 

0.827 

0.831 

0.836 

0.846 

0.878 

0.916 

0.958 

1.003 

1.048 

2899 

2916 

2945 

2984 

3014 

3064 

3114 

3214 

3314 

3514 

4014 

4514 

5014 

5514 

6014 

66.34 

3.11 

1.8 

0.34 

0.94 

0.33 

0.45 

0.56 

1.48 

2.06 

12.96 

9.63 

100 

 

C1 

C2 

C3 

iC4 

nC4 

iC5 

nC5 

C6 

C7
+ 

CO2 

H2S 

N2 

Total 

 

4. Discussion 
For validation of the accuracy of this method, 

the absolute average relative error of this new 

method is compared with some of the available 

reliable correlations. The results obtained from 

the comparisons made between this newly 

proposed model and its outperforming 

capabilities with respect to the available 

models regarding the title of this article are 

tabulated in tables 5 and 6. . It should be added 

that the previous methods have some 

limitation like presence of high pressure and 

existence of non-hydrocarbon compositions. 
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The capability of this new method for 

calculating the compressibility factor and gas 

viscosity is assessed through the test data, 

which is not applied during the process of 

model development. As observed in Tables (7 & 

8), this developed hybrid GA-ANFIS model is 

much more accurate than other empirical 

methods for prediction of a natural gas 

properties containing non-hydrocarbon 

components at high pressures and temperatures. 

Table 6. The Comparison of Case Studied Gas Sample and Experimental Data with the Results of the New Model 

and other Methods at T=350.33F 

Predicted µ 
Exp.µ (Pa.S) P (psia) Mole% Comp. 

LGE Sanjari Heidaryan GA-ANFIS model 

21.72 

23.16 

24.92 

27.03 

30.19 

32.38 

33.56 

36.42 

39.14 

41.61 

44.3 

47.58 

17.45 

18.72 

19.84 

21.32 

23.07 

25.48 

26.76 

28.53 

31.48 

34.05 

36.71 

38.95 

17.7 

18.66 

19.79 

21.13 

22.7 

24.51 

26.59 

28.97 

31. 7 

34.81 

38.38 

42.46 

17.08 

18.42 

19.80 

21.54 

23.38 

25.24 

26.95 

28.73 

30.38 

32.24 

33.69 

35.45 

17.13 

18.46 

19.96 

21.61 

23.35 

25.13 

26.92 

28.71 

30.47 

32.2 

33.9 

35.56 

 

1450.38 

2175.56 

2900.75 

3625.9 

4351.13 

5076.32 

5801.5 

6526.7 

7251.89 

7977.07 

8702.26 

9427.45 

 

88.04 

0.55 

2 

0.4 

0.62 

0.171 

0.14 

0 

0.24 

2.3 

1.99 

3.5 

100 

C1 

C2 

C3 

iC4 

nC4 

iC5 

nC5 

C6 

C7
+ 

CO2 

H2S 

N2 

Total 

Table 7. Average Absolute Relative Error for each Compressibility Factor Method versus Experimental Data 

Ref. Method Range of Application AARE% 

Beggs and Brill correlation sweet gasses , Tpr>0.92 5.49 

Shell oil company correlation for low and moderate pressures 3.80 

Heidaryan et al. correlation 1.2<Tpr<3 , 0.2<Ppr<15 3.54 

Azizi et al. correlation sweet gasses 3.92 

Sanjari and Lay correlation 1.01<Tpr<3 , 0.01<Ppr<15 3.76 

This study ANFIS-GA ___ 1.28 

Table 8. Average Absolute Relative Error for each Gas Viscosity Method versus Experimental Data 

Ref. Method Range of Application AARE% 

LGE correlation 10< P(psi) <8000 ,  100< T(F) <340 9.33 

Heidaryan et al correlation 116 < P(psi) <9580 ,  77.7< T(F) <340 5.61 

Sanjari and Lay correlation 1.01<Tpr<3 ,  0.01<Ppr<15 3.76 

This study ANFIS-GA ___ 0.57 
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5. Conclusion 

There exist several empirical correlations for 

predicting natural gas properties where are 

more accurate than the others. Most of the 

presented correlations for compressibility factor 

are based on Standing-Katz chart and this is 

the reason why they show some error compared 

to experimental data. There exist some 

limitation(s) of application in these methods, 

while this new developed model has no 

limitation in applying any type of gas mixture. 

A new method is developed based on the 

experimental data capable of predicting the 

compressibility factor and natural gas viscosity 

with more accuracy than the previous methods. 

Based on the obtained results, it is concluded 

that the developed GA-ANFIS system is more 

successful compared to Genfis2+ANFIS and 

exhibits a higher accuracy and a low absolute 

average relative percent error in predicting 

these properties of gas. 

Appendix 

Eq. (A.1)  Average error
N i i

i

Ζ exp-Ζ pre
( )

N
  

Eq. (A.2) Average absolute error = 

N

i ii

1
( Ζ exp-Ζ pre )

Ν
    

Eq. (A.3)       Average absolute relative error % 

N i i

i
i

Z  exp -Z pre100
( ) ( )

Z  exp



  

Nomenclature 

Ppr  Pseudo-reduced pressure 

Tpr  Pseudo-reduced temperature 

GP  Genetic Programming 

GA   Genetic Algorithm 

ANFIS  Adptive Neuro-Fuzzy Inference 

System  

FIS  Fuzzy Inference System 

MwC7+   Molecular weight of heptane-

plus fraction 

AARE   Average absolute relative error 

AAE   Average absolute error  

Pred   Predicted 

Exp   Experimental  

r  Range of influence  
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